A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D Correlation Spectroscopy (2DCoS) Analysis of Temperature-Dependent FTIR-ATR Spectra in Branched Polyethyleneimine/TEMPO-Oxidized Cellulose Nano-Fiber Xerogels. | LitMetric

2D Correlation Spectroscopy (2DCoS) Analysis of Temperature-Dependent FTIR-ATR Spectra in Branched Polyethyleneimine/TEMPO-Oxidized Cellulose Nano-Fiber Xerogels.

Polymers (Basel)

Department of Chemistry, Materials, and Chemical Engineering, "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.

Published: February 2021

Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), combined with a 2D correlation analysis, was here employed to investigate temperature-induced spectral changes occurring in a particular type of novel cellulosic-based nano-material prepared using 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) oxidized and ultra-sonicated cellulose nano-fibers (TOUS-CNFs) as three-dimensional scaffolds, and branched polyethyleneimine (bPEI) as cross-linking agent. The aim was to highlight the complex sequential events involving the different functional groups of the polymeric network, as well as to gain insight into the interplay between the amount of bPEI and the resulting sponge-like material, upon increasing temperature. In this framework, synchronous and asynchronous 2D spectra were computed and analyzed in three wavenumber regions (900-1200 cm, 1500-1700 cm and 2680-3780 cm), where specific vibrational modes of the cellulosic structure fall, and over a T-range between 250 K and 340 K. A step-by-step evolution of the different arrangements of the polymer functional groups was proposed, with particular regard to how the cooperativity degree of inter- and intramolecular hydrogen bonds (HBs) changes upon heating. Information acquired can be useful, in principle, in order to develop a next-generation, T-sensitive novel material to be used for water remediation applications or for drug-delivery nano-vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916696PMC
http://dx.doi.org/10.3390/polym13040528DOI Listing

Publication Analysis

Top Keywords

functional groups
8
correlation spectroscopy
4
spectroscopy 2dcos
4
2dcos analysis
4
analysis temperature-dependent
4
temperature-dependent ftir-atr
4
ftir-atr spectra
4
spectra branched
4
branched polyethyleneimine/tempo-oxidized
4
polyethyleneimine/tempo-oxidized cellulose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!