Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (n = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916500PMC
http://dx.doi.org/10.3390/brainsci11020214DOI Listing

Publication Analysis

Top Keywords

data quality
24
eeg data
16
data
9
eeg
8
spectral power
8
quality
7
effects
5
quality determinants
4
determinants impact
4
impact multicenter
4

Similar Publications

Value of ultrasound-assessed dactylitis in the early diagnosis of psoriatic arthritis.

Semin Arthritis Rheum

December 2024

Department of Rheumatology and Joint and Bone Research Unit. Fundación Jiménez Díaz University Hospital and Health Research Institute Fundación Jiménez Díaz (IIS-FJD, UAM), Autonomous University of Madrid, Madrid, Spain. Electronic address:

Purpose: The primary objective of this prospective, longitudinal, observational, single-centre study was to evaluate the association between ultrasound-assessed lesions of dactylitis and the diagnosis of psoriatic arthritis (PsA) in patients with psoriasis (PsO) and hand arthralgia.

Methods: We included adult patients diagnosed with PsO with hand arthralgia, with or without other musculoskeletal complaints. They were clinically assessed at baseline, 6 and 12 months by a rheumatologist blinded to the ultrasound findings.

View Article and Find Full Text PDF

A U-Net based partial convolutional time-domain separation model to identify motor units from surface electromyographic signals in real time.

J Electromyogr Kinesiol

December 2024

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:

This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.

View Article and Find Full Text PDF

Introduction: YouTube has become a popular source of health information, including plastic surgery. Given the platform's wide reach and potential influence on patient decisions, this study aimed to assess the quality of information available on YouTube for African audiences seeking plastic surgery procedures.

Methods: This cross-sectional study extracted data from YouTube videos on plastic surgery relevant to Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!