Intelligent Brushing Monitoring Using a Smart Toothbrush with Recurrent Probabilistic Neural Network.

Sensors (Basel)

Machine Intelligence and Automation Technology Lab, Department of Computer Science & Information Engineering, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City 320, Taiwan.

Published: February 2021

Smart toothbrushes equipped with inertial sensors are emerging as high-tech oral health products in personalized health care. The real-time signal processing of nine-axis inertial sensing and toothbrush posture recognition requires high computational resources. This paper proposes a recurrent probabilistic neural network (RPNN) for toothbrush posture recognition that demonstrates the advantages of low computational resources as a requirement, along with high recognition accuracy and efficiency. The RPNN model is trained for toothbrush posture recognition and brushing position and then monitors the correctness and integrity of the Bass Brushing Technique. Compared to conventional deep learning models, the recognition accuracy of RPNN is 99.08% in our experiments, which is 16.2% higher than that of the Convolutional Neural Network (CNN) and 21.21% higher than the Long Short-Term Memory (LSTM) model. The model we used can greatly reduce the computing power of hardware devices, and thus, our system can be used directly on smartphones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916355PMC
http://dx.doi.org/10.3390/s21041238DOI Listing

Publication Analysis

Top Keywords

neural network
12
toothbrush posture
12
posture recognition
12
recurrent probabilistic
8
probabilistic neural
8
computational resources
8
recognition accuracy
8
recognition
5
intelligent brushing
4
brushing monitoring
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!