We present a template-assisted method for synthesizing nanogap shell structures for biomolecular detections based on surface-enhanced Raman scattering. The interior nanogap-containing a silver shell structure, referred to as a silver nanogap shell (Ag NGS), was fabricated on silver nanoparticles (Ag NPs)-coated silica, by adsorbing small aromatic thiol molecules on the Ag NPs. The Ag NGSs showed a high enhancement factor and good signal uniformity, using 785-nm excitation. We performed in vitro immunoassays using a prostate-specific antigen as a model cancer biomarker with a detection limit of 2 pg/mL. To demonstrate the versatility of Ag NGS nanoprobes, extracellular duplex surface-enhanced Raman scattering (SERS) imaging was also performed to evaluate the co-expression of cancer biomarkers, human epidermal growth factor-2 (HER2) and epidermal growth factor receptor (EGFR), in a non-small cell lung cancer cell line (H522). Developing highly sensitive Ag NGS nanoprobes that enable multiplex biomolecular detection and imaging can open up new possibilities for point-of-care diagnostics and provide appropriate treatment options and prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916425PMC
http://dx.doi.org/10.3390/ijms22041752DOI Listing

Publication Analysis

Top Keywords

cancer biomarkers
8
nanogap shell
8
surface-enhanced raman
8
raman scattering
8
ngs nanoprobes
8
epidermal growth
8
template-assisted plasmonic
4
plasmonic nanogap
4
nanogap shells
4
shells highly
4

Similar Publications

Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.

View Article and Find Full Text PDF

Integrating machine learning with mendelian randomization for unveiling causal gene networks in glioblastoma multiforme.

Discov Oncol

January 2025

Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.

Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.

Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.

View Article and Find Full Text PDF

Characterization of 53 Multiplexed Targeted Proteomics Assays for Verification Studies in Cancer Cell Lines.

J Proteome Res

January 2025

Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec H3T 1E2, Canada.

The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug.

View Article and Find Full Text PDF

The ternary complex of PGRMC1-σ2R/TMEM97-LDLR has recently been discovered and plays a role in cholesterol transport. This study investigated whether individual components of that complex are prognostic breast cancer biomarkers and defined expression in established molecular subtypes. 4,463 invasive breast cancers were analyzed as a function of molecular and phenotypic markers, estimates of cellular proliferation, and recurrence-free survival.

View Article and Find Full Text PDF

The worldwide incidence of colorectal cancer (CRC) is roughly two million new instances each year throughout the world, according to the World Health Organization 2022. CRC is the third most prevalent disease and the second most common cancer in terms of fatality. People diagnosed with colorectal cancer in the early stages have a five-year survival rate of roughly 95%, but people identified with the disease in the later stages have a survival rate of approximately 12%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!