Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass.

Plant Physiol Biochem

State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

Published: April 2021

Haloxylon ammodendron, a typical xerophyte, tolerates various abiotic stresses and is widely distributed in desert areas. Two PGPR strains, Bacillus sp. WM13-24 and Pseudomonas sp. M30-35, were previously isolated from the rhizosphere of H. ammodendron in Tengger Desert, Gansu province, northwest China. The aim of this study was to investigate the role of M30-35 and WM13-24 in drought stress alleviation of ryegrass (Lolium perenne L.). Under normal condition, both M30-35 and WM13-24 increased shoot fresh and dry weight, chlorophyll content, total nitrogen and phosphorus contents and altered phytohormone distribution compared to control. Moreover, after 7 days of drought stress, WM13-24 and M30-35 enhanced photosynthetic capacity, relative water content, the activities of catalase (CAT) and peroxidase (POD) and proline content, resulted in decreased malondialdehyde (MDA) content, relative membrane permeability (RMP) and HO accumulation; interestingly, the two strains decreased ABA content in leaves. This study demonstrated that the two PGPR strains promoted ryegrass growth and root development via regulating plant hormone distribution and enhanced drought tolerance of ryegrass through improving the activities of antioxidant enzymes, regulating ABA signaling and maintaining plant growth. Our results indicated that PGPR strains from rhizosphere of the desert plant species could be considered as promising bioinoculants for grass plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.02.003DOI Listing

Publication Analysis

Top Keywords

pgpr strains
16
strains rhizosphere
8
haloxylon ammodendron
8
enhanced drought
8
drought tolerance
8
tolerance ryegrass
8
m30-35 wm13-24
8
drought stress
8
content
5
pgpr
4

Similar Publications

Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.

View Article and Find Full Text PDF

Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.

View Article and Find Full Text PDF

Plants are sessile organisms that overcome environmental stress by activating specific metabolic pathways, leading to adaptation and survival. In addition, they recruit beneficial bacterial strains to further improve their performance. As plant-growth-promoting rhizobacteria (PGPR) are able to trigger multiple targets to improve plant fitness, finding effective isolates for this purpose is of paramount importance.

View Article and Find Full Text PDF

This study investigates the effects of lead stress on tomato plants and explores the potential role of plant growth-promoting rhizobacteria (PGPR) to alleviate this stress. The experiment was conducted in pots, introducing varying lead levels (0, 100, 200, 300, 400, and 500 mg kg⁻¹) using lead nitrate. For rhizobacterial inoculation, pre-characterized LTPGP strains S5 Pseudomonas fluorescens A506 and S10 Pseudomonas fluorescens LMG 2189 were used.

View Article and Find Full Text PDF

Due to a lack of high-quality water, farmers have been compelled to use sewage water for irrigation, contaminating agricultural soils with multiple heavy metals. For the remediation of contaminated soil, plant growth-promoting rhizobacteria (PGPR), pressmud (PM), and iron (III) oxide were used to improve the growth and phytostabilization potential of chickpea grown in contaminated soil. Contaminated soil was collected from a nearby field, receiving sewage and factory water over the last 60 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!