Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress.

Ecotoxicol Environ Saf

State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, People's Republic of China.

Published: April 2021

Arbuscular mycorrhizal fungi (AMF) play an important role in improving plant tolerance and accumulation of zinc (Zn) and cadmium (Cd). The growth, physiology and absorption of elements and transport in Phragmites australis (P. australis) were investigated under Zn and Cd stress to identify the transport mechanisms of toxic trace elements (TE) under the influence of AMF. Thus, AMF were observed to alleviate the toxic effects of Zn and Cd on P. australis by increasing plant biomass and through different regulatory patterns under different TE concentrations. The activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased under Zn stress, and the activities of SOD, catalase (CAT), peroxidase (POD), and APX significantly increased under high concentrations of Cd. AMF differ in their strategies of regulating the transport of different metals under TE stress. Under Zn stress, the concentration of Zn in P. australis decreased by 10-57%, and the effect on Zn translocation factor (TF) was concentration-dependent. AMF increased the TF under low concentration stress, but decreased under high concentration stress. Under Cd stress, the concentration of Cd increased by as much as 17-40%, and the TF decreased. AMF were also found to change the interaction of Zn×Cd. In the absence of AMF, Cd exposure decreased the Zn concentrations in P. australis at Zn and Zn, while it increased the contents of Zn at Zn. The opposite trend was observed following treatment with AMF. However, regardless of the concentration of Cd, the addition of Zn decreased the concentration of Cd in both treatments in both the presence and absence of AMF. Under different TE stress conditions, the regulation of metal elements by AMF in host plants does not follow a single strategy but a trade-off between different trends of transportations. The findings of our study are important for applying AMF-P. australis systems in the phytoremediation of Zn-Cd co-contaminated ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112023DOI Listing

Publication Analysis

Top Keywords

amf
10
stress
9
arbuscular mycorrhizal
8
mycorrhizal fungi
8
phragmites australis
8
apx increased
8
stress stress
8
stress concentration
8
concentration stress
8
absence amf
8

Similar Publications

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.

View Article and Find Full Text PDF

Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus.

J Hazard Mater

January 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots.

View Article and Find Full Text PDF

Ecological filters shape arbuscular mycorrhizal fungal communities in the rhizosphere of secondary vegetation species in a temperate forest.

PLoS One

January 2025

Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.

The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.

View Article and Find Full Text PDF

The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.

View Article and Find Full Text PDF

Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!