Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis, that strongly contributes to neuronal development. The SCO becomes atrophic in adults, halting SCO-spondin production and its neuroprotective functions. Using rat and human neuronal cultures, we evaluated the neuroprotective effect of an innovative peptide derived from SCO-spondin against glutamate excitotoxicity. Primary neurons were exposed to glutamate and treated with the linear (NX210) and cyclic (NX210c) forms of the peptide. Neuronal survival and neurite networks were assessed using immunohistochemistry or biochemistry. The mechanism of action of both peptide forms was investigated by exposing neurons to inhibitors targeting receptors and intracellular mediators that trigger apoptosis, neuronal survival, or neurite growth. NX210c promoted neuronal survival and prevented neurite network retraction in rat cortical and hippocampal neurons, whereas NX210 was efficient only in neuronal survival (cortical neurons) or neurite networks (hippocampal neurons). They triggered neuroprotection via integrin receptors and γ-secretase substrate(s), activation of the PI3K/mTOR pathway and disruption of the apoptotic cascade. The neuroprotective effect of NX210c was confirmed in human cortical neurons via the reduction of lactate dehydrogenase release and recovery of normal basal levels of apoptotic cells. Together, these results show that NX210 and NX210c protect against glutamate neurotoxicity through common and distinct mechanisms of action and that, most often, NX210c is more efficient than NX210. Proof of concept in central nervous system animal models are under investigation to evaluate the neuroprotective action of SCO-spondin-derived peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2021.02.005 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
Background: Chemosensory perception plays a vital role in insect survival and adaptability, driving essential behaviours such as navigation, mate identification, and food location. This sensory process is governed by diverse gene families, including odorant-binding proteins (OBPs), olfactory receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs), gustatory receptors (GRs), and sensory neuron membrane proteins (SNMPs). The oriental mole cricket (Gryllotalpa orientalis Burmeister), an invasive pest with an underground, phyllophagous lifestyle, causes substantial crop damage.
View Article and Find Full Text PDFNeuroscience
January 2025
Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA.
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.
View Article and Find Full Text PDFNeuron
January 2025
Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. Electronic address:
Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!