Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the effects of terminal adenines on the formation and stability of tetramolecular G-quadruplexes (G4s) have been studied by electrospray ionization mass spectrometry (ESI-MS), UV, CD and NMR spectroscopy. Several evidences suggested that the sequences d(AGA) (n = 4 or 5) form stable uncompleted tetramolecular G4 at acidic condition which is different from the canonical one in the neutral condition. In addition, hydrolysis of guanine has also been observed in acidic condition that may occur for unpaired strands rather than in complete G4. Thus, a new G4 topology containing incomplete G-quartet is proposed that is very stable and particularly presents in acidic ammonium ions solution. The information presented in this study provides the new insight on the polymorphism of G4s in acidic environment, which may help understand of the special role of adenines on the formation of G4s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.02.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!