Disease modeling and pharmaceutical testing using cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) requires accurate assessment of contractile function. Micropatterning iPSC-CMs on elastic substrates controls cell shape and alignment to enable contractile studies, but determinants of intrinsic variability in this system have been incompletely characterized. The objective of this study was to determine the impact of myofibrillar structure on contractile function in iPSC-CMs. Automated analysis of micropatterned iPSC-CMs labeled with a cell-permeant F-actin dye revealed that myofibrillar abundance is widely variable among iPSC-CMs and strongly correlates with contractile function. This variability is not reduced by subcloning from single iPSCs and is independent of the iPSC-CM purification method. Controlling for myofibrillar structure reduces false-positive findings related to batch effect and improves sensitivity for pharmacologic testing and disease modeling. This analysis provides compelling evidence that myofibrillar structure should be assessed concurrently in studies investigating contractile function in iPSC-CMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940249 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2021.01.007 | DOI Listing |
J Cell Biol
April 2025
Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Department of Physical and Mental Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy.
Background: This observational study investigates the efficacy of combining local muscle vibration (LMV) therapy and kinesiotaping using the McConnell method (KMcCM) in patients with patellofemoral pain syndrome (PFPS). PFPS is a prevalent knee condition characterized by anterior or medial knee pain exacerbated by activities that overload the patellofemoral joint.
Objective: The primary aim of this study was to evaluate the effectiveness of LMV combined with KMcCM in reducing pain and improving function in PFPS patients.
BMC Pregnancy Childbirth
January 2025
Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Background: Lack of motivation and behavioral abnormalities are the hallmarks of postpartum depression (PPD). Severe uterine contractions during labor are pain triggers for psychiatric disorders, including PPD in women during the puerperium. Creating biomarkers to monitor PPD may help in its early detection and treatment.
View Article and Find Full Text PDFExp Brain Res
January 2025
Dept. of Neurosurgery, Upstate Medical University, 750 E. Adams St, Syracuse, NY, 13210, USA.
Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!