The periplasm of Gram-negative bacteria is a complex, highly crowded molecular environment. Little is known about how antibiotics move across the periplasm and the interactions they experience. Here, atomistic molecular dynamics simulations are used to study the antibiotic polymyxin B1 within models of the periplasm, which are crowded to different extents. We show that PMB1 is likely to be able to "hitchhike" within the periplasm by binding to lipoprotein carriers-a previously unreported passive transport route. The simulations reveal that PMB1 forms both transient and long-lived interactions with proteins, osmolytes, lipids of the outer membrane, and the cell wall, and is rarely uncomplexed when in the periplasm. Furthermore, it can interfere in the conformational dynamics of native proteins. These are important considerations for interpreting its mechanism of action and are likely to also hold for other antibiotics that rely on diffusion to cross the periplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2021.01.009DOI Listing

Publication Analysis

Top Keywords

periplasm
7
hitchhiker's guide
4
guide periplasm
4
periplasm unexpected
4
unexpected molecular
4
molecular interactions
4
interactions polymyxin
4
polymyxin coli
4
coli periplasm
4
periplasm gram-negative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!