The combination of organic chemistry and chemical vapor deposition enables a unique way to deposit conformal, high quality polymer thin films from the vapor phase. Particularly initiated chemical vapor deposition (iCVD) has recently shown its great potential in many different application fields. With the ever-increasing demands on the process, the need for additional process refinement is also growing. In this study the enhancement of the iCVD process by in-situ mass spectrometry is presented. The approach enables insight into real-time reaction kinetics during the deposition process as well as identification of reaction pathways. Furthermore, the composition of the gas phase can be precisely controlled and spontaneously adjusted if necessary. Particularly the deposition of thin films with thicknesses in the low nanometer range and the deposition of copolymers can benefit from this approach. The presented approach enables enhanced process control as well as the ability to perform extensive kinetic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c11180 | DOI Listing |
J Am Chem Soc
January 2025
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
Intensive longitudinal sampling enhances subjective data collection by capturing real-time, dynamic inputs in natural settings, complementing traditional methods. This study evaluates the feasibility of using daily self-reported app data to assess clinical improvement among tinnitus patients undergoing treatment. App data from a multi-center randomized clinical trial were analysed using time-series feature extraction and nested cross-validated ordinal regression with elastic net regulation to predict clinical improvement based on the Clinical Global Impression-Improvement scale (CGI-I).
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Yantai Yuhuangding Hospital, Shandong, China.
Background: The neutrophil-mediated generation of neutrophil extracellular traps (NETs) results in an augmented inflammatory response and cellular tissue injury during acute myocardial infarction (AMI). Through the analysis of public database information, we discovered and confirmed putative critical genes involved in NETs-mediated AMI.
Methods: The AMI dataset GSE66360 and the single-cell dataset GSE163465 were downloaded from the Gene Expression Omnibus database.
Biosens Bioelectron
January 2025
School of Clinical Medicine, Discipline of Women's Health, Faculty of Medicine, University of New South Wales, Royal Hospital for Women, Sydney, Australia; Department of Maternal-Fetal Medicine, Royal Hospital for Women, Sydney, Australia. Electronic address:
Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!