AI Article Synopsis

  • MLH1/PMS2 loss due to hypermethylation of the MLH1 promoter is the primary cause of mismatch repair deficiency in endometrial cancer, which often indicates a lower risk for germline mutations.
  • A study analyzed 117 endometrial cancer cases with dual MLH1/PMS2 loss; results showed that 85% were MLH1-hypermethylated, while a small percentage exhibited low-level, nonmethylated, or insufficient testing results.
  • Among 16 cases that underwent germline testing, 37.5% found variants of unknown significance, highlighting that patients with these variants may still show symptoms of Lynch syndrome, reinforcing the need for thorough family and personal cancer history evaluations before deciding on

Article Abstract

MLH1/PMS2 loss due to epigenetic hypermethylation of the MLH1 promoter is the most common cause of mismatch repair deficiency in endometrial carcinoma, and typically provides reassurance against an associated germline mutation. To further characterize the genetic features of MLH1/PMS2-deficient endometrial cancers, the departmental database was searched for cases with dual MLH1/PMS2 loss and retained MSH2/6 expression which underwent MLH1 hypermethylation testing. Genetic testing results were obtained when available. One hundred seventeen endometrial cancers met inclusion criteria: 100 (85%) were MLH1-hypermethylated, 3 (3%) were low-level/borderline, 7 (6%) were nonmethylated, and 7 (6%) were insufficient for testing. Sixteen cases (12 MLH1-hypermethylated, 3 nonmethylated, and 1 insufficient for testing) underwent germline testing, 6 of which (37.5%) demonstrated germline variants of unknown significance (VUS) (MSH6, PMS2, POLD1, BRIP1, RAD51D, CHEK2) but no known deleterious mutations. Notably, however, the patients harboring the MSH6 and PMS2 germline VUS had clinical features concerning for Lynch syndrome. One nonmethylated, germline-normal case underwent somatic tumor testing, and demonstrated a somatic MLH1 mutation. In summary, MLH1-hypermethylation accounts for the vast majority of MLH1/PMS2-deficient cancers in a universally screened population, although MLH1 somatic and germline mutations can occur. Occasionally, patients with MLH1-hypermethlated tumors also bear germline VUS in other mismatch repair genes as well as genes implicated in other hereditary cancer syndromes, but their clinical relevance is unclear. Family and personal cancer histories must always be evaluated to determine the need for germline testing in women with loss of MLH1/PMS2, even in the setting of hypermethylation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PGP.0000000000000767DOI Listing

Publication Analysis

Top Keywords

mlh1/pms2-deficient endometrial
8
universally screened
8
screened population
8
population mlh1
8
mlh1 hypermethylation
8
germline
8
germline mutation
8
mlh1/pms2 loss
8
mismatch repair
8
endometrial cancers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!