Objectives: The vowel-evoked envelope following response (EFR) is a useful tool for studying brainstem processing of speech in natural consonant-vowel productions. Previous work, however, demonstrates that the amplitude of EFRs is highly variable across vowels. To clarify factors contributing to the variability observed, the objectives of the present study were to evaluate: (1) the influence of vowel identity and the consonant context surrounding each vowel on EFR amplitude and (2) the effect of variations in repeated productions of a vowel on EFR amplitude while controlling for the consonant context.

Design: In Experiment 1, EFRs were recorded in response to seven English vowels (/ij/, /Ι/, /ej/, /ε/, /æ/, /u/, and /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic1/v/2021-04-30T105427Z/r/image-tiff/) embedded in each of four consonant contexts (/hVd/, /sVt/, /zVf/, and /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic2/v/2021-04-30T105427Z/r/image-tiffVv/). In Experiment 2, EFRs were recorded in response to four different variants of one of the four possible vowels (/ij/, /ε/, /æ/, or /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic3/v/2021-04-30T105427Z/r/image-tiff/), embedded in the same consonant-vowel-consonant environments used in Experiment 1. All vowels were edited to minimize formant transitions before embedding in a consonant context. Different talkers were used for the two experiments. Data from a total of 30 and 64 (16 listeners/vowel) young adults with normal hearing were included in Experiments 1 and 2, respectively. EFRs were recorded using a single-channel electrode montage between the vertex and nape of the neck while stimuli were presented monaurally.

Results: In Experiment 1, vowel identity had a significant effect on EFR amplitude with the vowel /æ/ eliciting the highest amplitude EFRs (170 nV, on average), and the vowel /ej/ eliciting the lowest amplitude EFRs (106 nV, on average). The consonant context surrounding each vowel stimulus had no statistically significant effect on EFR amplitude. Similarly in Experiment 2, consonant context did not influence the amplitude of EFRs elicited by the vowel variants. Vowel identity significantly altered EFR amplitude with /ε/ eliciting the highest amplitude EFRs (104 nV, on average). Significant, albeit small, differences (<21 nV, on average) in EFR amplitude were evident between some variants of /ε/ and /u/.

Conclusion: Based on a comprehensive set of naturally produced vowel samples in carefully controlled consonant contexts, the present study provides additional evidence for the sensitivity of EFRs to vowel identity and variations in vowel production. The surrounding consonant context (after removal of formant transitions) has no measurable effect on EFRs, irrespective of vowel identity and variant. The sensitivity of EFRs to nuances in vowel acoustics emphasizes the need for adequate control and evaluation of stimuli proposed for clinical and research purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AUD.0000000000000966DOI Listing

Publication Analysis

Top Keywords

amplitude efrs
20
efr amplitude
20
vowel identity
16
consonant context
16
efrs recorded
12
vowel
10
amplitude
10
influence vowel
8
efrs
8
context surrounding
8

Similar Publications

Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults.

View Article and Find Full Text PDF

The quest for noninvasive early markers for sensorineural hearing loss (SNHL) has yielded diverse measures of interest. However, comprehensive studies evaluating the test-retest reliability of multiple measures and stimuli within a single study are scarce, and a standardized clinical protocol for robust early markers of SNHL remains elusive. To address these gaps, this study explores the intra-subject variability of various potential electroencephalogram- (EEG-) biomarkers for cochlear synaptopathy (CS) and other SNHL-markers in the same individuals.

View Article and Find Full Text PDF

Current tests of hearing fail to diagnose pathologies in ~10% of patients seeking help for hearing difficulties. Neural ensemble responses to perceptually relevant cues in the amplitude envelope, termed envelope following responses (EFR), hold promise as an objective diagnostic tool to probe these 'hidden' hearing difficulties. But clinical translation is impeded by current measurement approaches involving static amplitude modulated (AM) tones, which are time-consuming and lack optimal spectrotemporal resolution.

View Article and Find Full Text PDF

Objective: Children with hearing loss experience greater difficulty understanding speech in the presence of noise and reverberation relative to their normal hearing peers despite provision of appropriate amplification. The fidelity of fundamental frequency of voice (f0) encoding-a salient temporal cue for understanding speech in noise-could play a significant role in explaining the variance in abilities among children. However, the nature of deficits in f0 encoding and its relationship with speech understanding are poorly understood.

View Article and Find Full Text PDF

This study assessed whether the effects of contralateral acoustic stimulation (CAS) are consistent with eliciting the medial olivocochlear (MOC) reflex for measurements sensitive to outer hair cell (otoacoustic emissions, OAEs), auditory-nerve (AN; compound action potential, CAP), and brainstem/cortical (envelope-following response, EFR) function. The effects of CAS were evaluated for simultaneous measurement of OAEs, CAPs, and EFRs in participants with normal hearing. Clicks were presented at 40 or 98 Hz in three ipsilateral noise conditions (no noise, 45 dB SPL, and 55 dB SPL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!