A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced treatment of shale gas fracturing waste fluid through plant-microbial synergism. | LitMetric

Cost-efficient and environmentally friendly treatment of hydraulic fracturing effluents is of great significance for the sustainable development of shale gas exploration. We investigated the synergistic effects of plant-microbial treatment of shale gas fracturing waste fluid. The results showed that illumination wavelength and temperature are direct drivers for microbial treatment effects of COD and BOD, while exhibit little effects on nitrogen compounds, TDS, EC, and SS removals as well as microbial species and composition. Plant-microbial synergism could significantly enhance the removal of pollutants compared with removal efficiency without plant enhancement. Additionally, the relative abundance and structure of microorganisms in the hydraulic fracturing effluents greatly varied with the illumination wavelength and temperature under plant-microbial synergism. 201.24 g water dropwort and 435 mg/L activated sludge with illumination of 450-495 nm (blue) at 25 °C was proved as the best treatment condition for shale gas fracturing waste fluid samples, which showed the highest removal efficiency of pollutants and the lowest algal toxicity in treated hydraulic fracturing effluents. The microbial community composition (36.73% Flavobacteriia, 25.01% Gammaproteobacteria, 18.55% Bacteroidia, 9.3% Alphaproteobacteria, 4.1% Cytophagia, and 2.83% Clostridia) was also significantly different from other treatments. The results provide a potential technical solution for improved treatment of shale gas hydraulic fracturing effluents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-12830-zDOI Listing

Publication Analysis

Top Keywords

shale gas
20
hydraulic fracturing
16
fracturing effluents
16
treatment shale
12
gas fracturing
12
fracturing waste
12
waste fluid
12
plant-microbial synergism
12
illumination wavelength
8
wavelength temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!