Meiotic recombination increases genetic diversity and manipulation of its frequency and distribution holds great promise in crop breeding. In Arabidopsis thaliana, FANCM (a homolog of mammalian Fanconi anemia complementation group M) suppresses recombination and its function seems conserved in other species including the rosids Brassica spp. and pea (Pisum sativum), and the monocot rice (Oryza sativa). To examine the role of FANCM during meiotic recombination in lettuce (Lactuca sativa, an asterid), we characterized the function of lettuce LsFANCM and found that it can functionally substitute for AtFANCM in transgenic Arabidopsis plants. Moreover, three independent CRISPR/Cas9-edited lettuce Lsfancm mutants showed reduced pollen viability and seed setting. Unexpectedly, analyses of chromosome behavior revealed that 77.8% of Lsfancm meiocytes exhibited univalents. The normal formation of double-strand breaks in DNA and the discontinuous assembly of synaptonemal complex in Lsfancm mutants supports the hypothesis that LsFANCM might be dispensable for the initiation of meiotic recombination but required for normal synapsis. Furthermore, the frequency of lettuce HEI10 (Human Enhancer of Invasion 10) foci, a marker for Class-I crossovers (COs), was similar between wild-type (WT) and Lsfancm. Strikingly, the distribution of LsHEI10 foci and chiasmata in Lsfancm meiotic chromosomes was markedly different from the WT. A similar alteration in the distribution of Class-I COs was also observed in the Arabidopsis Atfancm mutant. Taken together, these results demonstrate that FANCM is important for shaping the distribution of meiotic Class-I COs in plants, and reveal an evolutionarily divergent role for FANCM in meiotic bivalent formation between Arabidopsis and lettuce.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154078 | PMC |
http://dx.doi.org/10.1093/plphys/kiab061 | DOI Listing |
PLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France.
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation.
View Article and Find Full Text PDFPLoS Biol
January 2025
Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany.
A recent study in PLOS Biology on the epigenetic recombination regulator PRDM9 in salmonid fish reveals that its function has been preserved across vertebrates for hundreds of millions of years, with rapidly evolving DNA-binding domains being a defining attribute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!