A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppression of phosphorus release from eutrophic lake sediments by sediment microbial fuel cells. | LitMetric

Suppression of phosphorus release from eutrophic lake sediments by sediment microbial fuel cells.

Environ Technol

Division of Environmental Engineering Science, Faculty of Science and Technology, Gunma University, Kiryu, Japan.

Published: July 2022

Sediment microbial fuel cells (SMFCs) have served as an alternative technique to suppress phosphorus release from lake sediments to water bodies and thus mitigate eutrophication. However, the phosphorus regulation mechanism remains unclear. The purpose of this research was to understand the electrochemical influence of an SMFC on the phosphorus concentration in interstitial water. In this study, a lab-scale SMFC was applied to acetate-spiked sediments (ace+) and unspiked sediments (sed) with closed-circuit (CC)/open-circuit (OC) columns, and the circuitry was switched to investigate the relationship between electron transfer and phosphorus concentration. The dissolved total phosphorus (DTP) concentration in the sediment interstitial water in CC columns significantly decreased to below 0.1 mg/L, whereas the DTP in OC columns remained high for nine weeks. After switching the circuit, the DTP in OC→CC columns dropped but that in CC→OC columns increased within one week. At the end of the experimental period, the DTP concentrations in CC/sed, CC/ace+, OC/sed, and OC/ace+ columns were 0.10 ± 0.02, 0.03 ± 0.00, 0.82 ± 0.01, and 1.66 ± 0.12 mg/L, respectively. The respective estimated anode capacitances of those columns were 2.05 ± 0.49, 5.15 ± 0.14, 0.72 ± 0.19, and 0.71 ± 0.12 nF. We concluded that the phosphorus may have been electrochemically attracted and retained on the anode in the sediment because the adsorbed DTP contents and the increased anode capacitances were strongly correlated. Thus, SMFCs can be used for suppressing phosphorus release from eutrophic lake sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.1890837DOI Listing

Publication Analysis

Top Keywords

phosphorus release
12
lake sediments
12
release eutrophic
8
eutrophic lake
8
sediment microbial
8
microbial fuel
8
fuel cells
8
phosphorus concentration
8
interstitial water
8
anode capacitances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!