The cyanotoxin cylindrospermopsin (CYN) is the second biggest cause of poisoning worldwide, both in humans and animals. Although CYN primarily affects the aquatic environments and can be absorbed in fishes by multiple routes, data reporting its toxicity and mechanism of action are still scarce in this group. Using P. reticulata as model species, it was evaluated whether CYN promotes mutagenic and genotoxic effects in different fish target tissues. Adult females were exposed in a static way to 0 (control), 0.5, 1.0, and 1.5 μg L of pure CYN for 24 and 96 hours. For the first time, DNA damage was detected in fish brain after CYN exposition. In brain cells, a concentration-response DNA damage was observed for both exposure times, suggesting a direct or indirect action of CYN in neurotoxicity. For the liver cells, 96 hours caused an increase in DNA damage, as well the highest percentage of DNA in the tail was reached when used 1.5 μg L of CYN. In peripheral blood cells, an increase in DNA damage was observed for all tested concentrations after 96 hours. In erythrocytes, micronuclei frequency was higher at 1.5 μg L treatment while the erythrocyte nuclear abnormalities (ENA) frequency was significantly higher even at the lowest CYN concentration. Such data demonstrated that acute exposition to CYN promotes genotoxicity in the brain, liver, and blood cells of P. reticulata, as well mutagenicity in erythrocytes. It rises an alert regarding to the toxic effects of CYN for aquatic organisms as well as for human health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23111DOI Listing

Publication Analysis

Top Keywords

dna damage
20
cyn
10
cyn aquatic
8
cyn promotes
8
damage observed
8
increase dna
8
blood cells
8
frequency higher
8
dna
6
damage induced
4

Similar Publications

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Chloride intracellular channel CLIC3 mediates fibroblast cellular senescence by interacting with ERK7.

Commun Biol

January 2025

Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.

Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.

View Article and Find Full Text PDF

Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear.

View Article and Find Full Text PDF

Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.

View Article and Find Full Text PDF

Levels and oxidative toxicity of microplastics and perfluoroalkyl substances (PFASs) in different tissues of sea cucumber (Holothuria tubulosa).

Sci Total Environ

January 2025

School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy. Electronic address:

Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!