Volatile organic compounds (VOCs), which are usually organic compounds with boiling point in the range of 50 to 260°C, pose a serious threat to human health and ecological environment. In order to find an adsorbent with excellent adsorption effect on VOCs, activated carbon was prepared from corn bran partially degraded by Trichoderma viride, and the adsorption performance of the optimized porous carbon materials on toluene was studied. Physical and chemical properties (such as specific surface area, pore size distribution, and surface functional groups) of the activated carbon were characterized by scanning electron microscope (SEM), N adsorption/desorption experiences, Fourier-transform infrared (FTIR), and Raman and X-ray diffraction (XRD). The results showed that the specific surface area of corn bran reached 1896 m/g and the total pore volume was 1.04 cm/g after 15 days of microbial pretreatment. Dynamic simulation of adsorption experiment found that the saturated adsorption capacity of the pretreated carbon material was 237 mg/g at 100 ppm toluene concentration, which was 1.58 times of that of corn bran without microbial pretreatment. Generally, the improvement of adsorption performance may be mainly attributed to the increase of specific surface area, pore volume and the decrease of surface acidic groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-12796-y | DOI Listing |
Chem Commun (Camb)
January 2025
Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.
This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.
View Article and Find Full Text PDFSmall
January 2025
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02-106, Poland.
The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!