Background: Machine learning to predict morbidity and mortality-especially in a population traditionally considered low risk-has not been previously examined. We sought to characterize the incidence of death among patients with a low estimated morbidity and mortality risk based on the National Surgical Quality Improvement Program (NSQIP) estimated probability (EP), as well as develop a machine learning model to identify individuals at risk for "unpredicted death" (UD) among patients undergoing hepatopancreatic (HP) procedures.
Methods: The NSQIP database was used to identify patients who underwent elective HP surgery between 2012-2017. The risk of morbidity and mortality was stratified into three tiers (low, intermediate, or high estimated) using a k-means clustering method with bin sorting. A machine learning classification tree and multivariable regression analyses were used to predict 30-day mortality with a 10-fold cross validation. C statistics were used to compare model performance.
Results: Among 63,507 patients who underwent an HP procedure, median patient age was 63 (IQR: 54-71) years. Patients underwent either pancreatectomy (n=38,209, 60.2%) or hepatic resection (n=25,298, 39.8%). Patients were stratified into three tiers of predicted morbidity and mortality risk based on the NSQIP EP: low (n=36,923, 58.1%), intermediate (n=23,609, 37.2%) and high risk (n=2,975, 4.7%). Among 36,923 patients with low estimated risk of morbidity and mortality, 237 patients (0.6%) experienced a UD. According to the classification tree analysis, age was the most important factor to predict UD (importance 16.9) followed by preoperative albumin level (importance: 10.8), disseminated cancer (importance: 6.5), preoperative platelet count (importance: 6.5), and sex (importance 5.9). Among patients deemed to be low risk, the c-statistic for the machine learning derived prediction model was 0.807 compared with an AUC of only 0.662 for the NSQIP EP.
Conclusions: A prognostic model derived using machine learning methodology performed better than the NSQIP EP in predicting 30-day UD among low risk patients undergoing HP surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867718 | PMC |
http://dx.doi.org/10.21037/hbsn.2019.11.30 | DOI Listing |
Biomark Res
January 2025
Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.
Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.
Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFHereditas
January 2025
Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!