Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (2), Calreticulin () and (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase , polycomb group protein and histone-lysine N-methyltransferase genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray-based transcriptomic profile analysis of bone marrow-derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein-protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty-seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of and transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone-lysine N-methyltransferase , SWI/SNF complex subunit , chromatin remodeling complex subunit , tubulin β () and cyclin dependent kinase . Among the upregulated epigenetic markers, there was a ~10-fold increase in expression in V617F negative samples. A significant increase in total CD34 counts in 2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in 2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816297PMC
http://dx.doi.org/10.3892/ol.2021.12465DOI Listing

Publication Analysis

Top Keywords

stem cell
12
cd34+ cells
8
myeloproliferative neoplasms
8
hematopoietic stem
8
triple negative
8
histone-lysine n-methyltransferase
8
mpn samples
8
ppi network
8
cell cycle
8
v617f negative
8

Similar Publications

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF

Targeting KAT6A/B as a New Therapeutic Strategy for Cancer Therapy.

J Med Chem

January 2025

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.

The lysine acetyltransferase 6A (KAT6A, MOZ, MYST3) is a member of the MYST family of protein acetyltransferases, which are essential for different biological processes such as craniofacial, embryonic, stem cell development, and hematopoiesis. KAT6A is an oncogene in human acute myeloid leukemia (AML), and KAT6A overexpression in AML is associated with metastases and poor prognoses. Furthermore, KAT6A mutations play an important role in cancer formation and progression and result in therapeutic resistance in both hematopoietic malignancies and solid tumors.

View Article and Find Full Text PDF

Background: Pleural effusion and ascites developing after allogeneic hematopoietic stem cell transplantation (allo-SCT) are generally associated with inferior overall survival (OS); however, the prognostic value of pretransplant effusion on transplant outcomes remained unclear.

Methods: We retrospectively evaluated minimal pleural effusion and ascites detected by computed tomography in 248 consecutive adult patients who underwent their first allo-SCT from January 2007 to December 2022.

Results: Forty-eight patients demonstrated minimal pleural effusion or ascites within 100 days before transplantation (Effusion group) and the other 200 had no effusion (No effusion group).

View Article and Find Full Text PDF

Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.

View Article and Find Full Text PDF

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!