Early-life neglect in critical developmental periods has been associated with emotional and cognitive consequences. Maternal separation (MS) has been commonly used as a rodent model to identify the developmental effects of child neglect. However, reports have shown considerable variability in behavioral results from MS studies in both mice and rats. Difficulties in developing reliable child neglect models have impeded advances in identifying the effects of early-life stress. Accumulating evidence shows that neuronal intrinsic excitability plays an important role in information processing and storage in the brain. The prefrontal cortex (PFC) integrates information from many cortical and subcortical structures. No studies to date have examined the impact of early-life stress on glutamatergic neuronal excitability in the PFC. This study aimed to develop a reliable child neglect rat model and observe glutamatergic neuronal excitability in the PFC. An MS with early weaning (MSEW) rat model was developed. Rats were separated from the dam for 4 h per day on postnatal days (PNDs) 2-5 and for 8 h per day on PNDs 6-16 and then weaned on PND 17. A battery of behavioral tests was used to assess anxiety-like behavior, coping behavior, working memory, spatial reference memory, and fear memory. The action potentials (APs) of glutamatergic neuronal membranes were recorded. MSEW resulted in anxiety-like behavior, a passive coping strategy and increased fear memory in male rats and decreased locomotor activity in both sexes. MSEW slightly impaired working memory during non-stressful situations in female rats but did not change spatial reference memory or associative learning under stressful circumstances in either sex. MSEW reduced the number of glutamatergic neuron APs in male rats. Our findings showed that MS with early weaning induced anxiety-like behavior in male rats. The reduced glutamatergic neuronal excitability may be associated with the emotional alteration induced by MSEW in male rats. In addition, MSEW induced adaptive modification, which depended on a non-stressful context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870800 | PMC |
http://dx.doi.org/10.3389/fpsyt.2020.572224 | DOI Listing |
Front Neurosci
December 2024
Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.
The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.
View Article and Find Full Text PDFNeural Regen Res
November 2025
School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!