Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
X-ray luminescence imaging emerged for about a decade and combines both the high spatial resolution of x-ray imaging with the high measurement sensitivity of optical imaging, which could result in a great molecular imaging tool for small animals. So far, there are two types of x-ray luminescence computed tomography (XLCT) imaging. One uses a pencil beam x-ray for high spatial resolution at a cost of longer measurement time. The other uses cone beam x-ray to cover the whole mouse to obtain XLCT images at a very short time but with a compromised spatial resolution. Here we review these two methods in this paper and highlight the synthesized nanophosphors by different research groups. We are building a focused x-ray luminescence tomography (FXLT) imaging system, developing a machine-learning based FXLT reconstruction algorithm, and synthesizing nanophosphors with different emission wavelengths. In this paper, we will report our current progress from these three aspects. Briefly, we mount all main components, including the focused x-ray tube, the fiber detector, and the x-ray tube and x-ray detector for a microCT system, on a rotary which is a heavy-duty ring track. A microCT scan will be performed before FXLT scan. For a FXLT scan, we will have four PMTs to measure four fiber detectors at two different wavelengths simultaneously for each linear scan position. We expect the spatial resolution of the FXLT imaging will be around 100 micrometers and a limit of detection of approximately 2 μg/mL (for GdOS:Eu).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875188 | PMC |
http://dx.doi.org/10.1117/12.2544601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!