Proton minibeam radiotherapy (pMBRT) is a spatial fractionation method using sub-millimeter beams at center-to-center (ctc) distances of a few millimeters to widen the therapeutic index by reduction of side effects in normal tissues. Interlaced minibeams from two opposing or four orthogonal directions are calculated to minimize side effects. In particular, heterogeneous dose distributions applied to the tumor are investigated to evaluate optimized sparing capabilities of normal tissues at the close tumor surrounding. A 5 cm thick tumor is considered at 10 cm depth within a 25 cm thick water phantom. Pencil and planar minibeams are interlaced from two (opposing) directions as well as planar beams from four directions. An initial beam size of σ = 0.2 mm (standard deviation) is assumed in all cases. Tissue sparing potential is evaluated by calculating mean clonogenic cell survival using a linear-quadratic model on the calculated dose distributions. Interlacing proton minibeams for homogeneous irradiation of the tumor has only minor benefits for the mean clonogenic cell survival compared to unidirectional minibeam irradiation modes. Enhanced mean cell survival, however, is obtained when a heterogeneous dose distribution within the tumor is permitted. The benefits hold true even for an elevated mean tumor dose, which is necessary to avoid cold spots within the tumor in concerns of a prescribed dose. The heterogeneous irradiation of the tumor allows for larger ctc distances. Thus, a high mean cell survival of up to 47% is maintained even close to the tumor edges for single fraction doses in the tumor of at least 10 Gy. Similar benefits would result for heavy ion minibeams with the advantage of smaller minibeams in deep tissue potentially offering even increased tissue sparing. The enhanced mean clonogenic cell survival through large ctc distances for interlaced pMBRT with heterogeneous tumor dose distribution results in optimum tissue sparing potential. The calculations show the largest enhancement of the mean cell survival in normal tissue for high-dose fractions. Thus, hypo-fractionation or even single dose fractions become possible for tumor irradiation. A widened therapeutic index at big cost reductions is offered by interlaced proton or heavy ion minibeam therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878903PMC
http://dx.doi.org/10.1038/s41598-021-81708-4DOI Listing

Publication Analysis

Top Keywords

cell survival
28
clonogenic cell
16
tumor
13
tumor dose
12
ctc distances
12
tissue sparing
12
proton minibeam
8
minibeam radiotherapy
8
heterogeneous tumor
8
dose
8

Similar Publications

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.

View Article and Find Full Text PDF

Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice.

Exp Biol Med (Maywood)

December 2024

Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.

Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!