Feeding broiler chickens on diets based on cereal grains of high non-starch polysaccharides content such as wheat and barley can negatively impact their performance and gut health. Plant extracts can be used as a potential tool to alleviate these negative effects. The present study assessed the effects of dietary cereal type and the inclusion of a plant extract blend (PEB) on the growth performance, intestinal histomorphology, caecal microflora, and gene expression of selected biomarkers for gut integrity in broiler chickens in a 42-d experiment. Ross-308 male broilers were assigned into different dietary treatments and fed on two cereal types (corn- vs. wheat/barley-based) with/without added graded concentrations of a PEB (0, 250, 500, 1000, and 2000 mg/kg diet). There were no significant differences in the growth performance parameters, intestinal histomorphology, and caecal microflora due to the impact of dietary cereal type. However, lactobacilli count in the caecal microflora was increased in the group fed on a corn-based diet. The PEB supplementation especially at a level of 500 to 1000 mg/kg diet significantly increased the average BW and decreased the feed conversion ratio. It also increased the villi length of duodenum, jejunum, and ileum, decreased the duodenal crypt depth, and increased the villi length to crypt depth ratio in the duodenum, jejunum and ileum. Supplementation of the PEB decreased the total bacterial and coliform count and increased the lactobacilli count in a linear pattern. Gene expression of Occludin and Junction Adhesion Molecule was significantly increased in the PEB supplemented diets, whereby no influence was observed on mucin expression. In conclusion, supplementation of a PEB at levels of 500-1000 mg/kg can be used as a tool to improve broiler performance and gut health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2020.100056DOI Listing

Publication Analysis

Top Keywords

caecal microflora
16
cereal type
12
growth performance
12
gene expression
12
broiler chickens
12
plant extract
8
performance intestinal
8
performance gut
8
gut health
8
dietary cereal
8

Similar Publications

Infectious bronchitis virus (IBV) is known to cause significant alterations in tracheal microbial flora in broiler chickens 5 days post-infection (dpi) and our focus is to understand the changes in both respiratory and gastrointestinal microbiome in broilers over a period of time following IBV infection. A study was conducted to characterize the tracheal and cecal microbiome in IBV infected and control broiler chickens at 6, 9 and 15 dpi. IBV genome in trachea, lung and cecal tonsils could be observed in the infected group at all the time points.

View Article and Find Full Text PDF

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

Sodium alginate/low methoxyl pectin composite hydrogel beads prepared via gas-shearing technology for enhancing the colon-targeted delivery of probiotics and modulating gut microbiota.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!