Trials to improve oocyte developmental competence under metabolic stress by using antioxidants may start before or after oocyte maturation. In the present conceptual study, we aimed to identify the most efficient timing of antioxidant application in relation to a metabolic insult using a bovine invitro embryo production model. Pathophysiological concentrations of palmitic acid (PA) were used to induce metabolic stress during oocyte maturation or embryo development. Trolox (TR; antioxidant) treatment prior to, during or after the PA insult was tested to evaluate the protective, neutralising and rescuing capacity of TR respectively. Changes in embryo developmental competence, mitochondrial activity, reactive oxygen species (ROS) concentrations, blastocyst cell allocation and apoptosis and cell stress-related gene expression were monitored. The improvement in developmental capacity was most obvious when oocytes were preloaded with TR before the PA insult. This protective effect could be explained by the observed combination of increased mitochondrial activity with reduced ROS production. This resulted in blastocysts with normal cell counts and apoptosis, as well as increased nuclear factor erythroid 2-related factor 2 (NRF2) expression (a marker for redox regulatory processes) and normalised the expression of the mitochondrial transcription factor A (TFAM), a marker of mitochondrial biogenesis. These results indicate that 'pretreatment' of oocytes with antioxidants produces embryos that seem to be more resilient to a metabolic stress insult.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD20194 | DOI Listing |
J Transl Med
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
This study aimed to compare and evaluate the prediction accuracy and risk of bias (ROB) of post-traumatic stress disorder (PTSD) predictive models. We conducted a systematic review and random-effect meta-analysis summarizing predictive model development and validation studies using machine learning in diverse samples to predict PTSD. Model performances were pooled using the area under the curve (AUC) with a 95% confidence interval (CI).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.
Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!