Background: CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.
Results: In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.
Conclusions: The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879532 | PMC |
http://dx.doi.org/10.1186/s12896-021-00669-8 | DOI Listing |
J Biotechnol
August 2022
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand. Electronic address:
CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited.
View Article and Find Full Text PDFBMC Biotechnol
February 2021
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
Background: CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.
Results: In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!