Background: Persons with multiple sclerosis (PwMS) often have reduced aerobic capacity and report fatigue as the most disabling symptom impacting their health-related quality of life (HRQoL). A multidisciplinary rehabilitation approach is recommended for successful management of symptoms, although there is little supporting evidence. The aim of this study is to evaluate the effect of a multimodal therapy approach, including endurance training and patient education, during a three-week inpatient rehabilitation stay, on HRQoL in PwMS at six months follow-up. Inpatient energy management education (IEME) + high-intensity interval training (HIIT) will be compared with progressive muscle relaxation (PMR) + moderate continuous training (MCT).

Methods: This study has a two-armed single-blind randomized controlled superiority trial design. One hundred six PwMS-related fatigue (relapsing-remitting or chronic progressive phenotypes; Expanded Disability Status Scale (EDSS) ≤ 6.5) will be recruited at the Valens clinic, Switzerland, and randomized into either an experimental (EG) or a control group (CG). EG: participants will perform IEME twice and HIIT three times per week during the three-week rehabilitation stay. IEME is a group-based intervention, lasting for 6.5 h over three weeks. HIIT contains of five 1.5-min high-intensive exercise bouts on a cycle ergometer at 95-100% of peak heart rate (HR), followed by active breaks of unloaded pedalling for 2 min to achieve 60% of HR. CG: participants will perform PMR twice and MCT three times per week during the three-week rehabilitation stay, representing local usual care. PMR consists of six 1-h relaxation group sessions. MCT consists of 24-min continuous cycling at 65% of HR. The primary outcome is HRQoL (Physical and Mental Component Summaries of the Medical Outcome Study 36-item Short Form Health Survey; SF-36), measured at entry to the clinic (baseline, T), three weeks after T (T) and at four (T) and six (T) months after T. Secondary outcomes comprise cardiorespiratory fitness, inflammatory markers (measured at T and T), fatigue, mood, self-efficacy, occupational performance, physical activity (measured at T, T, T and T) and behaviour changes in energy management (measured at T and T).

Discussion: This study will provide detailed information on a multimodal therapy approach to further improve rehabilitation for PwMS.

Trial Registration: This trial was prospectively registered at ClinicalTrials.gov ( NCT04356248 ; 22 April 2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877079PMC
http://dx.doi.org/10.1186/s12883-021-02084-0DOI Listing

Publication Analysis

Top Keywords

energy management
12
rehabilitation stay
12
high-intensity interval
8
interval training
8
management education
8
moderate continuous
8
continuous training
8
progressive muscle
8
muscle relaxation
8
health-related quality
8

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Background & objectives The choice of anesthetic for better perioperative conservation of immune responses has always been contentious. This study investigated the differential impact of the intravenous anesthetic, propofol, and the volatile anesthetic, isoflurane on the T cell immune responses, if any, among individuals going through perioperative breast cancer. Methods Perioperative blood samples (preoperative, intraoperative and postoperative) collected from participants with breast cancer in two arms namely isoflurane arm (n=50) and the propofol arm (n=50) were analyzed for T cell immune response using flow cytometry and ELISA.

View Article and Find Full Text PDF

Background Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine, has shown potential in treating frailty and overactive bladder (OAB) symptoms. However, its effects are multifaceted and vary among individuals. This pilot study explored the use of topological data analysis (TDA) and natural language processing (NLP) to evaluate the effect of NYT on frailty in patients with OAB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!