Acidic Ionic Liquids Enabling Intermediate Temperature Operation Fuel Cells.

ACS Appl Mater Interfaces

Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

Published: February 2021

Herein we show that protic ionic liquids (PILs) are promising electrolytes for fuel cells operating in the temperature range 100-120 °C. ,-Diethyl--methyl-3-sulfopropan-1-ammonium hydrogen sulfate ([DEMSPA][HSA]), ,-diethyl--methyl-3-sulfopropan-1-ammonium triflate ([DEMSPA][TfO]), ,-diethyl-3-sulfopropan-1-ammonium hydrogen sulfate ([DESPA][HSA]), and ,-diethyl-3-sulfopropan-1-ammonium triflate ([DESPA][TfO]) are investigated in this study with regard to their specific conductivity, thermal stability, viscosity, and electrochemical properties. The [DEMSPA][TfO] and [DESPA][TfO] electrolytes offer high limiting current densities for the oxygen reduction reaction (ORR) on platinum electrodes, that is, about 1 order of magnitude larger than 98% HPO. This is explained by the minor poisoning of the Pt catalyst and the significantly larger product of the oxygen self-diffusion coefficient and concentration in these two PILs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20679DOI Listing

Publication Analysis

Top Keywords

ionic liquids
8
fuel cells
8
hydrogen sulfate
8
acidic ionic
4
liquids enabling
4
enabling intermediate
4
intermediate temperature
4
temperature operation
4
operation fuel
4
cells protic
4

Similar Publications

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Facile and Regioselective Deuteration of C2-Alkylated Imidazolium Salts in the Presence of Cesium Carbonate.

Chemistry

December 2024

Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.

Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!