A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatiotemporal Analysis of Hydration Mechanism in Sodium Alginate Matrix Tablets. | LitMetric

Methods of spatiotemporal characterization of nonequilibrated polymer based matrices are still immature and imperfect. The purpose of the study was to develop the methodology for the spatiotemporal characterization of water transport and properties in alginate tablets under hydration. The regions of low water content were spatially and temporally sampled using Karl Fisher and Differential Scanning Callorimetry (spatial distribution of freezing/nonfreezing water) with spatial resolution of 1 mm. In the regions of high water content, where sampling was infeasible due to gel/sol consistency, magnetic resonance imaging (MRI) enabled characterization with an order of magnitude higher spatial resolution. The minimally hydrated layer (MHL), infiltration layer (IL) and fully hydrated layer (FHL) were identified in the unilaterally hydrated matrices. The MHL gained water from the first hour of incubation (5-10% /) and at 4 h total water content was 29-39% with nonfreezing pool of 28-29%. The water content in the IL was 45-47% and at 4 h it reached ~50% with the nonfreezing pool of 28% and T relaxation time < 10 ms. The FHL consisted of gel and sol layer with water content of 85-86% with a nonfreezing pool of 11% at 4 h and T in the range 20-200 ms. Hybrid destructive/nondestructive analysis of alginate matrices under hydration was proposed. It allowed assessing the temporal changes of water distribution, its mobility and interaction with matrices in identified layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866837PMC
http://dx.doi.org/10.3390/ma14030646DOI Listing

Publication Analysis

Top Keywords

water content
20
nonfreezing pool
12
water
9
spatiotemporal characterization
8
spatial resolution
8
hydrated layer
8
content
5
spatiotemporal analysis
4
analysis hydration
4
hydration mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!