Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866510 | PMC |
http://dx.doi.org/10.3390/ijms22031391 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China.
Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).
View Article and Find Full Text PDFMolecules
January 2025
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia.
Artemisinin is a sesquiterpene lactone derived from the plant L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!