Photoprotective Activity of Cell Culture Methanolic Extract on UVB-irradiated 3T3-Swiss Albino Fibroblasts.

Plants (Basel)

Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico.

Published: January 2021

The research on compounds exhibiting photoprotection against ultraviolet radiation (UVR) is a matter of increasing interest. The methanolic extract of a cell culture of has potential photoprotective effects as these cells produce phenolic secondary metabolites (SMs). These metabolites are attributed with biological activities capable of counteracting the harmful effects caused by UVR on skin. In the present work, the methanolic extract (310-2500 µg/mL) of cell culture showed a photoprotective effect on UVB-irradiated 3T3-Swiss albino fibroblasts with a significant increase in cell viability. The greatest photoprotective effect (75%) of the extract was observed at 2500 µg/mL, which was statistically comparable with that of 250 µg/mL verbascoside, used as positive control. In addition, concentrations of the extract higher than 2500 µg/mL resulted in decreased cell viability (≤83%) after 24 h of exposure. Phytochemical analysis of the extract allowed us to determine that it was characterized by high concentrations of total phenol and total phenolic acid contents (138 ± 4.7 mg gallic acid equivalents and 44.01 ± 1.33 mg verbascoside equivalents per gram of extract, respectively) as well as absorption of UV light (first and second bands peaking at 294 and 330 nm, respectively). Some phenylethanoid glycosides were identified from the extract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912278PMC
http://dx.doi.org/10.3390/plants10020266DOI Listing

Publication Analysis

Top Keywords

cell culture
12
methanolic extract
12
extract
8
uvb-irradiated 3t3-swiss
8
3t3-swiss albino
8
albino fibroblasts
8
cell viability
8
2500 µg/ml
8
cell
5
photoprotective
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!