Quercetin, a dietary flavonoid found in fruits and vegetables, has been described as a substance with many anti-cancer properties in a variety of preclinical investigations. In the present study, we demonstrate that 2D and 3D melanoma models exhibit not only different sensitivities to quercetin, but also opposite, cancer-promoting effects when metastatic melanoma spheroids are treated with quercetin. Higher concentrations of quercetin reduce melanoma growth in three tested cell lines, whereas low concentrations induce the opposite effect in metastatic melanoma spheroids but not in the non-metastatic cell line. High (>12.5 µM) or low (<6.3 µM) quercetin concentrations decrease or enhance cell viability, spheroid size, and cell proliferation, respectively. Additionally, melanoma cells cultivated in 2D already show significant caspase 3 activity at very low concentrations (>0.4 µM), whereas in 3D spheroids apoptotic cells, caspase 3 activity can only be detected in concentrations ≥12.5 µM. Further, we show that the tumor promoting or repressing effect in the 3D metastatic melanoma spheroids are likely to be elicited by a precisely controlled regulation of Nrf2/ARE-mediated cytoprotective genes, as well as ERK and NF-κB phosphorylation. According to the results obtained here, further studies are needed to better characterize the mechanisms of action underlying the pro- and anti-carcinogenic effects of quercetin on human melanomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866537PMC
http://dx.doi.org/10.3390/molecules26030717DOI Listing

Publication Analysis

Top Keywords

melanoma spheroids
16
metastatic melanoma
12
quercetin human
8
quercetin
6
melanoma
6
spheroids
5
concentration-dependent pro-
4
pro- antitumor
4
antitumor activities
4
activities quercetin
4

Similar Publications

Synergistic Anti-Cancer Effects of Curcumin and Thymoquinone Against Melanoma.

Antioxidants (Basel)

December 2024

Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.

Combining anti-cancer agents in cancer therapies is becoming increasingly common because of their improved efficacy, reduced toxicity, and decreased risk of resistance development. Melanoma, a highly aggressive form of skin cancer characterized by limited treatment options due to chemoresistance, poses a considerable challenge for effective management. Here, we test the hypothesis that dietary supplements such as thymoquinone (TQ) and curcumin (CU) cooperatively modulate cancer-associated cellular mechanisms to inhibit melanoma progression.

View Article and Find Full Text PDF

Multimodal tumor suppression by METTL3 gene knockdown in melanoma and colon cancer cells.

Histochem Cell Biol

December 2024

Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh Blvd., P.O. Box 14965-161, Tehran, Iran.

METTL3, an m6A methyltransferase, is integral to the regulation of messenger RNA (mRNA) biogenesis, degradation, and translation through the N6-methyladenosine (m6A) modification. Alterations in m6A homeostasis have been implicated in the development, progression, invasion, and metastasis of certain cancers. The present research aims to examine the consequences of METTL3 knockdown using short hairpin RNA (shRNA) on the proliferation and invasive capabilities of human colorectal and melanoma cancer cell lines.

View Article and Find Full Text PDF

Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes.

Cell Commun Signal

December 2024

EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.

Background: Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types.

View Article and Find Full Text PDF

Long-standing goals of cancer immunotherapy are to activate cytotoxic antitumor T cells across a broad range of affinities while dampening suppressive regulatory T (Treg) cell responses, but current approaches achieve these goals with limited success. Here, we report a IL-21 mimic, 21h10, designed to have augmented stability and high signaling potency in both humans and mice. In multiple animal models and in human melanoma patient derived organotypic tumor spheroids (PDOTS), 21h10 showed robust antitumor activity.

View Article and Find Full Text PDF

Analysis of variants induced by combined ex vivo irradiation and in vivo tumorigenesis suggests a role for the ZNF831 p.R1393Q mutation in cutaneous melanoma development.

J Invest Dermatol

December 2024

Broad Institute, Cambridge, USA., 02140; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02114; Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA 02114. Electronic address:

Ultraviolet (UV) radiation is known to be the most important environmental carcinogen for cutaneous melanoma. While genomic analyses of melanoma tumors implicate a high rate of UV damage, the experimental induction and recovery of bona fide UV-signature changes have not been directly observed. To replicate recurrent UV mutations from TCGA_SKCM specimens, we UV-irradiated cultured immortalized human melanocytes and subjected them to in vivo tumorigenesis assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!