Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS (MoS@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS@PDA MMMs with different concentrations were obtained. The addition amount of MoS@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m h bar. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17-99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, NaSO 10.52%, MgSO 4.64%, and MgCl 1.55%, reflecting the potential for separating salts and dyes of MoS@PDA/PES MMMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912618PMC
http://dx.doi.org/10.3390/membranes11020096DOI Listing

Publication Analysis

Top Keywords

tight ultrafiltration
8
pore size
8
membranes
5
separation
5
membrane
5
rejection
5
polydopamine-assisted two-dimensional
4
two-dimensional molybdenum
4
molybdenum disulfide
4
disulfide mos-modified
4

Similar Publications

subsp. HN019 is a commercially available well-characterized probiotic with documented effects on human health, such as the ability to enhance the immune function and to balance the intestinal microbiome. Therefore, optimizing the manufacturing process to improve sustainability, increasing biomass yields and viability, and avoiding animal -derived nutrients in the medium to meet vegan consumer's needs, is currently of interest.

View Article and Find Full Text PDF

Construction of PDA-PEI/ZIF-L@PE tight ultra-filtration (TUF) membranes on porous polyethylene (PE) substrates for efficient dye/salt separation.

J Hazard Mater

April 2024

College of Chemistry and Materials Engineering, Wenzhou University. Wenzhou, Zhejiang 325035, China; Institute of New Materials & Industrial Technologies, Wenzhou University, Wenzhou 325024, China. Electronic address:

Tight ultra-filtration (TUF) membranes were constructed by in situ growing zinc imidazole frameworks micro-crystalline leaves (ZIF-L) in polyethylene imine (PEI) and polydopamine (PDA) deposit layers on porous polyethylene (PE) substrates. The effects of preparation conditions on the surface physical and chemical structures as well as on the dye/salt separation performance of the formed TUF membranes were systematically investigated. By inserting selective water permeation channels and increasing contacting surface areas, in situ-grown ZIF-L arrays tightly cross-linked in the coating matrix greatly increased water permeation without trading off dye/salt retention selectivity.

View Article and Find Full Text PDF

Based on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property.

View Article and Find Full Text PDF

Integrated bipolar electrocoagulation and PVC-based ultrafiltration membrane process for palm oil mill effluent (POME) treatment.

Chemosphere

January 2024

Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

In this study, the effectiveness of integrating electrocoagulation (EC) and ultrafiltration (UF) membranes for palm oil mill effluent (POME) wastewater treatment was investigated. The impact of various parameters on contaminant removal efficiency, including electrode configuration (monopolar and bipolar), number of anodes, agitation rate, and current density, was studied. The findings demonstrated that using bipolar (BP) electrodes in the EC reactor improved coagulation efficiency.

View Article and Find Full Text PDF

Identification of novel angiotensin converting enzyme (ACE) inhibitory peptides from Pacific saury: In vivo antihypertensive effect and transport route.

Int J Biol Macromol

January 2024

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Electronic address:

Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!