Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison?

Biomolecules

Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.

Published: January 2021

Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911486PMC
http://dx.doi.org/10.3390/biom11020191DOI Listing

Publication Analysis

Top Keywords

axon guidance
12
lysosomal function
8
function axon
8
guidance
4
guidance meaningful
4
meaningful liaison?
4
liaison? axonal
4
axonal trajectories
4
trajectories neural
4
neural circuit
4

Similar Publications

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Background: The present study delves into the intricate molecular connections between ischemic stroke (IS) and Alzheimer's disease (AD) through an analysis of mitochondrial microRNA (miRNA) patterns. By exploring their shared signatures in the context of IS and AD, our aim is to unravel potential common pathways, understand shared molecular mechanisms, explore diagnostic and therapeutic opportunities, gain a comprehensive understanding of neurodegeneration, and advance the field of biomarker research.

Method: To explore these intriguing questions, mitochondria were isolated from postmortem brains of individuals with IS, AD, and healthy controls (n=10 each).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Radboud University Medical Center, Nijmegen, Gelderland, Netherlands.

Background: Commissural tracts are the white matter fibre bundles intercommunicating left and right brain hemispheres. They integrate many cognitive functions such as memory, verbal processing, motor and perceptual skills. Also, commissures connect specific layers of cortical neurons that are also lost in Alzheimer's disease (AD) and other neurodegenerative disorders.

View Article and Find Full Text PDF

Alzheimer's Imaging Consortium.

Alzheimers Dement

December 2024

Radboud University Medical Center, Nijmegen, Gelderland, Netherlands.

Background: Commissural tracts are the white matter fibre bundles intercommunicating left and right brain hemispheres. They integrate many cognitive functions such as memory, verbal processing, motor and perceptual skills. Also, commissures connect specific layers of cortical neurons that are also lost in Alzheimer's disease (AD) and other neurodegenerative disorders.

View Article and Find Full Text PDF

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!