The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911664 | PMC |
http://dx.doi.org/10.3390/nano11020340 | DOI Listing |
Nanomaterials (Basel)
January 2021
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!