Human chorionic gonadotropin (hCG) is a hormone that specifically binds to luteinizing hormone receptor (LHR) and exerts several roles, including the support of pregnancy and fetal gonadal steroidogenesis. Since hCG is also expressed by some tumor types, like breast cancer, many efforts have been made to study its role in neoplesia, with some studies showing a cancer-supportive role and others showing a cancer-protective role. A critical examination of the literature highlighted that the in vitro effect of hCG has been tested in the presence of fetal serum, which contains other gonadotropins, in the culture medium. Thus, we hypothesized that the use of serum in the cell culture medium might influence the cell response to the hCG treatment due to the presence of other hormones. Thus, we analyzed the in vitro effect of highly purified hCG on cell proliferation and the activation of the down-stream signal transduction pathway in three breast cancer cell lines, particularly focusing on MCF7, cultured in serum-deprived conditions. Our data show that hCG increases cell proliferation and activates the down-stream target Akt, together with a decrease of the LHR mRNA expression level. Finally, we also tested the differentiation capacity of hCG on MCF7 cancer stem cells (CSCs) and show that it favors the proliferation and differentiation of these cells, thus suggesting that hCG also renders cells more able to colonize and invade the organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911704 | PMC |
http://dx.doi.org/10.3390/cells10020264 | DOI Listing |
Breast Cancer
January 2025
Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Mol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!