Using low-cost sensors to build a seismic network for earthquake early warning (EEW) and to generate shakemaps is a cost-effective way in the field of seismology. National Taiwan University (NTU) network employing 748 P-Alert sensors based on micro-electro-mechanical systems (MEMS) technology is operational for almost the last 10 years. This instrumentation is capable of recording the strong ground motions of up to ± 2g and is dense enough to record the near-field ground motion. It has proven effective in generating EEW warnings and delivering real-time shakemaps to the concerned disaster relief agencies to mitigate the earthquake-affected regions. Before 2020, this instrumentation was used to plot peak ground acceleration (PGA) shakemaps only; however, recently it has been upgraded to generate the peak ground velocity (PGV), Central Weather Bureau (CWB) Intensity scale, and spectral acceleration () shakemaps at different periods as value-added products. After upgradation, the performance of the network was observed using the latest recorded earthquakes in the country. The experimental results in the present work demonstrate that the new parameters shakemaps added in the current work provide promising outputs, and are comparable with the shakemaps given by the official agency CWB. These shakemaps are helpful to delineate the earthquake-hit regions which in turn is required to assist the needy well in time to mitigate the seismic risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867025 | PMC |
http://dx.doi.org/10.3390/s21030943 | DOI Listing |
Sensors (Basel)
October 2023
Gansu Zijin Cloud Big Data Development Co., Ltd., Jinchang 737100, China.
It is of great significance to study the thermal radiation anomalies of earthquake swarms in the same area in terms of selecting abnormal characteristic determination parameters, optimizing and determining the processing model, and understanding the abnormal machine. In this paper, we investigated short-term and long-term thermal radiation anomalies induced by earthquake swarms in Iran and Pakistan between 2007 and 2016. The anomalies were extracted from infrared remote sensing black body temperature data from the China Geostationary Meteorological Satellites (FY-2C/2E/2F/2G) using the multiscale time-frequency relative power spectrum (MS T-FRPS) method.
View Article and Find Full Text PDFSensors (Basel)
November 2021
National Center for Seismology, Ministry of Earth Sciences, Government of India, New Delhi 110003, India.
Seismic instrumentation for earthquake early warnings (EEWs) has improved significantly in the last few years, considering the station coverage, data quality, and the related applications. The official EEW system in Taiwan is operated by the Central Weather Bureau (CWB) and is responsible for issuing the regional warning for moderate-to-large earthquakes occurring in and around Taiwan. The low-cost micro-electro-mechanical system (MEMS)-based P-Alert EEW system is operational in Taiwan for on-site warnings and for producing shakemaps.
View Article and Find Full Text PDFSensors (Basel)
May 2021
Institute of Engineering Seismology and Earthquake Engineering (ITSAK-EPPO), 55102 Thessaloniki, Greece.
The development and application of a low-cost instrumentation system for seismic hazard assessment in urban areas are described in the present study. The system comprises a number of autonomous triaxial accelerographs, designed and manufactured in house and together with dedicated software for device configuration, data collection and further postprocessing. The main objective is to produce a detailed view of strong motion variability in urban areas, for at least light intensity strong motion events.
View Article and Find Full Text PDFSensors (Basel)
January 2021
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan.
Using low-cost sensors to build a seismic network for earthquake early warning (EEW) and to generate shakemaps is a cost-effective way in the field of seismology. National Taiwan University (NTU) network employing 748 P-Alert sensors based on micro-electro-mechanical systems (MEMS) technology is operational for almost the last 10 years. This instrumentation is capable of recording the strong ground motions of up to ± 2g and is dense enough to record the near-field ground motion.
View Article and Find Full Text PDFPLoS One
May 2016
Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.
Background: Research on long-term health effects of earthquakes is scarce, especially in low- and middle-income countries, which are disproportionately affected by disasters. To date, progress in this area has been hampered by the lack of tools to accurately measure these effects. Here, we explored whether long-term public health effects of earthquakes can be assessed using a combination of readily available data sources on public health and geographic distribution of seismic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!