Interests in using biological agents for control of human pathogens on vegetable seeds are rising. This study evaluated whether probiotic bacterium GG, bacterial strains previously used as biocontrol agents in plant science, as well as a selected plant pathogen could compete with foodborne human pathogens, such as and enterohemorrhagic (EHEC), for growth in microbiological media and attachment to vegetable seeds; and to determine whether the metabolites in cell-free supernatants of competitive bacterial spent cultures could inhibit the growth of the two pathogens. The results suggest that the co-presence of competitive bacteria, especially GG, significantly ( < 0.05) inhibited the growth of and EHEC. Cell-free supernatants of GG cultures significantly reduced the pathogen populations in microbiological media. Although not as effective as GG in inhibiting the growth of and EHEC, the biocontrol agents were more effective in competing for attachment to vegetable seeds. The study observed the inhibition of human bacterial pathogens by competitive bacteria or their metabolites and the competitive attachment to sprout seeds among all bacteria involved. The results will help strategize interventions to produce vegetable seeds and seed sprouts free of foodborne pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912496PMC
http://dx.doi.org/10.3390/foods10020285DOI Listing

Publication Analysis

Top Keywords

vegetable seeds
20
microbiological media
12
attachment vegetable
12
growth microbiological
8
media attachment
8
human pathogens
8
biocontrol agents
8
cell-free supernatants
8
competitive bacteria
8
growth ehec
8

Similar Publications

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Lotus seed extract: anticancer potential and chemoprofiling by , and GC-MS studies.

Front Chem

December 2024

Department of Medical Laboratory Sciences, College of Applied Medical Laboratory Sciences, Majmaah University, Al Majma'ah, Saudi Arabia.

Lotus seeds, also known as Nelumbinis semen, has been utilized for over 7,000 years as vegetable, functional food and medicine. In this study, we primarily investigated the anticancer effects of lotus seed extracts, particularly of the methanolic extract (MELS) on cell proliferation inhibition, apoptosis induction and cell cycle arrest in ovarian cancer cell lines. Further, we studied the phytochemical composition of the MELS by gas chromatography-mass spectrometry (GC-MS) analysis.

View Article and Find Full Text PDF

Genome-wide association study of sucrose content in vegetable soybean.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Genetics Improvement of Soybean, Zhongshan Biological Breeding Laboratory (ZSBBL), State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Ministry of Agriculture, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Nanjing Agricultural University, Nanjing, 210095, China.

Background: Vegetable soybean is an important legume vegetable. High sucrose content is a significant quality characteristic of vegetable soybean that influences consumers' taste. However, the genetic basis of sucrose content in vegetable soybean is currently unclear.

View Article and Find Full Text PDF

The present study examined optimal dietary patterns of eight plant-based foods for preventing chronic diseases, including hypertension, stroke, myocardial infarction, and diabetes, using data from the China Health and Nutrition Survey (CHNS). We applied generalized estimating equations to assess time-based changes and gender differences, using residual balancing weights to control time-varying confounders, and employed a restricted cubic spline model to explore dose-response relationships by gender. The findings suggested that a high intake of vegetables and whole grains, along with moderate amounts of fruits, fungi and algae, could help reduce the risk of developing these four chronic diseases simultaneously.

View Article and Find Full Text PDF

Unlocking the role of silicon against biotic stress in plants.

Front Plant Sci

December 2024

Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.

The requirement for agricultural crops continues to enhance with the continuous growth of the human population globally. Plant pathogenic diseases outbreaks are enhancing and threatening food security and safety for the vulnerable in different regions worldwide. Silicon (Si) is considered a non-essential element for plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!