A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measurement Matrix Optimization for Compressed Sensing System with Constructed Dictionary via Takenaka-Malmquist Functions. | LitMetric

Measurement Matrix Optimization for Compressed Sensing System with Constructed Dictionary via Takenaka-Malmquist Functions.

Sensors (Basel)

Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999078, China.

Published: February 2021

Compressed sensing (CS) has been proposed to improve the efficiency of signal processing by simultaneously sampling and compressing the signal of interest under the assumption that the signal is sparse in a certain domain. This paper aims to improve the CS system performance by constructing a novel sparsifying dictionary and optimizing the measurement matrix. Owing to the adaptability and robustness of the Takenaka-Malmquist (TM) functions in system identification, the use of it as the basis function of a sparsifying dictionary makes the represented signal exhibit a sparser structure than the existing sparsifying dictionaries. To reduce the mutual coherence between the dictionary and the measurement matrix, an equiangular tight frame (ETF) based iterative minimization algorithm is proposed. In our approach, we modify the singular values without changing the properties of the corresponding Gram matrix of the sensing matrix to enhance the independence between the column vectors of the Gram matrix. Simulation results demonstrate the promising performance of the proposed algorithm as well as the superiority of the CS system, designed with the constructed sparsifying dictionary and the optimized measurement matrix, over existing ones in terms of signal recovery accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916195PMC
http://dx.doi.org/10.3390/s21041229DOI Listing

Publication Analysis

Top Keywords

measurement matrix
16
sparsifying dictionary
12
compressed sensing
8
takenaka-malmquist functions
8
gram matrix
8
matrix
6
dictionary
5
signal
5
measurement
4
matrix optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!