Background: Glioma is an aggressive type of brain tumor that originated from neuroglia cells, accounts for about 80% of all malignant brain tumors. Glioma aggressiveness has been associated with extreme cell proliferation, invasion of malignant cells, and resistance to chemotherapies. Due to resistance to common therapies, glioma affected patients' survival has not been remarkably improved. ZEB2 (SIP1) is a critical transcriptional regulator with various functions during embryonic development and wound healing that has abnormal expression in different malignancies, including brain tumors. ZEB2 overexpression in brain tumors is attributed to an unfavorable state of the malignancy. Therefore, we aimed to investigate some functions of ZEB2 in two different glioblastoma U87 and U373 cell lines.
Methods: In this study, we investigated the effect of ZEB2 knocking down on the apoptosis, cell cycle, cytotoxicity, scratch test of the two malignant brain tumor cell lines U87 and U373. Besides, we investigated possible proteins and microRNA, SMAD2, SMAD5, and miR-214, which interact with ZEB2 via in situ analysis. Then we evaluated candidate gene expression after ZEB2-specific knocking down.
Results: We found that ZEB2 suppression induced apoptosis in U87 and U373 cell lines. Besides, it had cytotoxic effects on both cell lines and reduced cell migration. Cell cycle analysis showed cell cycle arrest in G0/G1 and apoptosis induction in U87 and U373 cell lines receptively. Also, we have found that SAMAD2/5 expression was reduced after ZEB2-siRNA transfection and miR-214 upregulated after transfection.
Conclusions: In line with previous investigations, our results indicated a critical oncogenic role for ZEB2 overexpression in brain glioma tumors. These properties make ZEB2 an essential molecule for further studies in the treatment of glioma cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916008 | PMC |
http://dx.doi.org/10.3390/molecules26040901 | DOI Listing |
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!