Current prognostic risk scores in cardiac surgery do not benefit yet from machine learning (ML). This research aims to create a machine learning model to predict one-year mortality of a patient after transcatheter aortic valve implantation (TAVI). We adopt a modern gradient boosting on decision trees classifier (GBDTs), specifically designed for categorical features. In combination with a recent technique for model interpretations, we developed a feature analysis and selection stage, enabling the identification of the most important features for the prediction. We base our prediction model on the most relevant features, after interpreting and discussing the feature analysis results with clinical experts. We validated our model on 270 consecutive TAVI cases, reaching a C-statistic of 0.83 with CI [0.82, 0.84]. The model has achieved a positive predictive value ranging from 57% to 64%, suggesting that the patient selection made by the heart team of professionals can be further improved by taking into consideration the clinical data we identified as important and by exploiting ML approaches in the development of clinical risk scores. Our approach has shown promising predictive potential also with respect to widespread prognostic risk scores, such as logistic European system for cardiac operative risk evaluation (EuroSCORE II) and the society of thoracic surgeons (STS) risk score, which are broadly adopted by cardiologists worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915084 | PMC |
http://dx.doi.org/10.3390/bioengineering8020022 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEur Stroke J
January 2025
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).
Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.
Br J Hosp Med (Lond)
January 2025
Department of Obstetrics and Gynecology, The First Clinical Medical College of Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China.
Gestational diabetes mellitus (GDM) is a common complication during pregnancy. This retrospective study investigates the correlation between umbilical blood flow index and maternal-fetal outcomes in pregnant women with GDM, aiming to contribute to evidence-based risk assessment and management strategy in this high-risk obstetric population. This retrospective study recruited 119 pregnant women with GDM who were admitted to the Yichang Central People's Hospital, between January 2022 and January 2024.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
The Geriatric Nutritional Risk Index (GNRI) is an effective tool for identifying malnutrition, and helps monitor the prognosis of patients undergoing maintenance hemodialysis. However, the association between the GNRI and cardiovascular or all-cause mortality in hemodialysis patients remains unclear. Therefore, this study investigated the correlation of the GNRI with all-cause and cardiovascular mortality in patients undergoing maintenance hemodialysis.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Surgery & Cancer, Imperial College London, London, UK.
Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!