This work critically compared the removal of fluorescing PARAFAC components and selected pharmaceuticals (carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) from a tertiary wastewater effluent by different UV- and ozone-based advanced oxidation processes (AOPs) operated at pilot-scale. Investigated AOPs included UV/HO, UV/Cl, O, O/UV, HO/O/UV, and the new Cl/O/UV. AOPs comparison was accomplished using various ozone doses (0-9 mg/L), UV fluences (191-981 mJ/cm) and radical promoter concentrations of Cl = 0.04 mM and HO = 0.29 mM. Chlorine-based AOPs produced radical species that reacted more selectively with pharmaceuticals than radical species and oxidants generated by other AOPs. Tryptophan-like substances and humic-like fluorescing compounds were the most degraded components by all AOPs, which were better removed than microbial products and fulvic-like fluorescing substances. Removal of UV absorbance at 254 (UV) nm was always low. Overall, chlorine-based AOPs were more effective to reduce fluorescence intensities than similar HO-based AOPs. The Cl/O/UV process was the most effective AOP to degrade all target micro-pollutants except primidone. On the other hand, the oxidation performance of pharmaceuticals by other ozone-based AOPs followed the order HO/O/UV > O/UV > O. UV/Cl process outcompeted UV/HO only for the removal of trimethoprim and sulfamethoxazole. Correlations between the removal of pharmaceuticals and spectroscopic indexes (PARAFAC components and UV) had unique regression parameters for each compound, surrogate parameter and oxidation process. Particularly, a diverse PARAFAC component for each investigated AOP resulted to be the most sensitive surrogate parameter able to monitor small changes of pharmaceuticals removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142720 | DOI Listing |
Sci Total Environ
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Polychlorinated biphenyls (PCBs), a typical type of persistent organic pollutants (POPs), were previously widely employed as insulating and heat exchange fluids in transformers and capacitors. Despite knowledge of its adverse effects, the precise mechanism underlying PCB77 toxicity remains enigmatic. In this study, we utilized zebrafish as a model organism to explore the toxic effects of various concentrations of PCB77 (10, 200, and 1000 μg/L) and its molecular toxicity mechanisms.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Crop Science Discipline, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.
View Article and Find Full Text PDFMolecules
December 2024
Research and Educational Center "Institute of Chemical Technologies", Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia.
Ethylene glycol (EG) is a contaminant in the wastewater of airports because it is commonly used in aircraft deicing fluids during the cold season in northern regions. Ethylene glycol by itself has relatively low toxicity to mammals and aquatic organisms, but it can lead to a substantial increase in chemical and biological oxygen demands. The contamination of water with EG facilitates the rapid growth of microbial biofilms, which decreases the concentration of dissolved oxygen in water and negatively affects overall biodiversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!