Most information on the ecology of oak-dominated forests in Europe comes from forests altered for centuries because remnants of old-growth forests are rare. Disturbance and recruitment regimes in old-growth forests provide information on forest dynamics and their effects on long-term carbon storage. In an old-growth Quercus petraea forest in northwestern Spain, we inventoried three plots and extracted cores from 166 live and dead trees across canopy classes (DBH ≥ 5 cm). We reconstructed disturbance dynamics for the last 500 years from tree-ring widths. We also reconstructed past dynamics of above ground biomass (AGB) and recent AGB accumulation rates at stand level using allometric equations. From these data, we present a new tree-ring-based approach to estimate the age of carbon stored in AGB. The oldest tree was at least 568 years, making it the oldest known precisely-dated oak to date and one of the oldest broadleaved trees in the Northern Hemisphere. All plots contained trees over 400 years old. The disturbance regime was dominated by small, frequent releases with just a few more intense disturbances that affected ≤20% of trees. Oak recruitment was variable but rather continuous for 500 years. Carbon turnover times ranged between 153 and 229 years and mean carbon ages between 108 and 167 years. Over 50% of AGB (150 Mg·ha) persisted ≥100 years and up to 21% of AGB (77 Mg·ha) ≥300 years. Low disturbance rates and low productivity maintained current canopy oak dominance. Absence of management or stand-replacing disturbances over the last 500 years resulted in high forest stability, long carbon turnover times and long mean carbon ages. Observed dynamics and the absence of shade-tolerant species suggest that oak dominance could continue in the future. Our estimations of long-term carbon storage at centennial scales in unmanaged old-growth forests highlights the importance of management and natural disturbances for the global carbon cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142737DOI Listing

Publication Analysis

Top Keywords

old-growth forests
12
carbon
9
long-term carbon
8
carbon storage
8
carbon turnover
8
turnover times
8
carbon ages
8
oak dominance
8
long carbon
8
forests
6

Similar Publications

Tracking individual seed fate confirms mainly antagonistic interactions between rodents and European beech.

Biol Lett

January 2025

Department of Ecosystem Management, Climate, and Biodiversity, Institute of Wildlife Biology and Game Management, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria.

Food-hoarding granivores act as both predators and dispersers of plant seeds, resulting in facultative species interactions along a mutualism-antagonism continuum. The position along this continuum is determined by the positive and negative interactions that vary with the ratio between seed availability and animal abundance, particularly for mast-seeding species with interannual variation and spatial synchrony of seed production. Empirical data on the entire fate of seeds up to germination and the influence of rodents on seed survival is rare, resulting in a lack of consensus on their position along the mutualism-antagonism continuum.

View Article and Find Full Text PDF

Forest restoration has been a common practice to safeguard water quality and stream health but it is unclear to which extent and pace forest restoration recovers stream ecosystem structure and functions. Also, stream health might be affected by the forest restoration type and the quality of the interventions. Here, we sought to evaluate the recovery of stream habitat and water quality through forest restoration in catchments dominated by pasturelands, and explored the relationship between landscape structure and stream ecosystem recovery.

View Article and Find Full Text PDF

Predicting marine habitat for marbled murrelets during breeding and nonbreeding seasons in the Salish Sea, British Columbia, Canada.

PLoS One

January 2025

Wildlife Research Division, Institute of Ocean Sciences, Environment and Climate Change Canada, Integrated Marine Spatial Ecology Lab, Sidney, British Columbia, Canada.

The marbled murrelet (Brachyramphus marmoratus) is a small seabird inhabiting coastal regions along the Pacific coast of North America, and nests in old-growth forests usually within 80 km from shore. The Canadian population of marbled murrelets is listed as Threatened under the federal Species at Risk Act. To investigate the species' marine distribution, we conducted analyses of the occurrence of marbled murrelets at-sea between 2000 and 2022, utilizing at-sea and marine shoreline surveys in the Canadian portion of the Salish Sea.

View Article and Find Full Text PDF

Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!