Background: Regarding the multiple health effects of e-cigarettes, there are insufficient data on potential effects on bronchial reactivity (BHR). In the present study, we assessed the impact of a switch from conventional to e-cigarettes on BHR under realistic conditions over a period of 3 months.
Methods: Sixty subjects who declared to reduce or stop their tobacco consumption by inhalation of nicotine-containing liquids via e-cigarette, and 20 volunteers participating in a stop-smoking program were included. Data was analysed using parametric and non-parametric statistical procedures. Spirometry, determinations of exhaled carbon monoxide (eCO) and nitric oxide (FeNO), provocation testing with mannitol as an indirect bronchial stimulus, and cotinine measurements were used to investigate BHR and nicotine abstinence.
Results: BHR to mannitol significantly decreased in the group using e-cigarettes and nicotine-containing liquids over a period of three months in this real-life setting. Participants reduced their tobacco consumption to about 25% or lower, confirmed by a reduction in eCO. Changes in lung function and FeNO were small and not statistically significant, and changes in the stop-smoking group were similar to those in the e-cigarette group.
Conclusion: The reduction in BHR that can be expected after a reduction of cigarette consumption was not abolished by the concomitant use of e-cigarettes. Whether the decrease in BHR observed after 3 months is maintained when using e-cigarettes over longer time periods or has an individual prognostic value, must be clarified in long-term studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rmed.2021.106324 | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy.
Introduction: Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:
RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!