The current COVID-19 pandemic requires urgent development of effective therapeutics. 5-amino levulinic acid (5-ALA) is a naturally synthesized amino acid and has been used for multiple purposes including as an anticancer therapy and as a dietary supplement due to its high bioavailability. In this study, we demonstrated that 5-ALA treatment potently inhibited infection of SARS-CoV-2, a causative agent of COVID-19, in cell culture. The antiviral effects could be detected in both human and non-human cells, without significant cytotoxicity. Therefore, 5-ALA is worth to be further investigated as an antiviral drug candidate for COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846235 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2021.01.091 | DOI Listing |
Exploration (Beijing)
August 2024
Prodrug-based self-assembled nanoparticles (PSNs) with tailored responses to tumor microenvironments show a significant promise for chemodynamic therapy (CDT) by generating highly toxic reactive oxygen species (ROS). However, the insufficient level of intracellular ROS and the limited drug accumulation remain major challenges for further clinical transformation. In this study, the PSNs for the delivery of artesunate (ARS) are demonstrated by designing the pH-responsive ARS-4-hydroxybenzoyl hydrazide (HBZ)-5-amino levulinic acid (ALA) nanoparticles (AHA NPs) with self-supplied ROS for excellent chemotherapy and CDT.
View Article and Find Full Text PDFCancers (Basel)
July 2024
Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France.
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
June 2024
State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, China.
OMICS
December 2023
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, India.
High-grade gliomas (HGGs) are among the most aggressive brain tumors and are characterized by dismally low median survival time. Of the many factors influencing the survival of patients with HGGs, proximity to the subventricular zone (SVZ) is one of the key influencers. In this context, 5-amino levulinic acid fluorescence-guided multiple sampling (FGMS) offers the prospect of understanding patient-to-patient molecular heterogeneity driving the aggressiveness of these tumors.
View Article and Find Full Text PDFGlioblastoma (GBM) is the commonest primary malignant brain tumour in adults and effective treatment options are limited. Combining local chemotherapy with enhanced surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!