Discovery of a novel 53BP1 inhibitor through AlphaScreen-based high-throughput screening.

Bioorg Med Chem

Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. Electronic address:

Published: March 2021

Tumor suppressor p53-binding protein 1 (53BP1), a tantem tudor domain (TTD) protein, takes part in DNA Damage Repair (DDR) pathways through the specific recognition of lysine methylation on histones. The dysregulation of 53BP1 is closely related to the development of many diseases including cancer. Moreover, recent studies found that deficiency of 53BP1 could increase the efficiency of precise CRISPR/Cas9 genome editing. Thus, discovery of inhibitor is beneficial to the study of biological functions of 53BP1 and the application of CRISPR/Cas9 genome editing. UNC2170 and its derivatives have been reported as 53BP1 targeted small molecular inhibitors with modest activities. Hence, to discover better 53BP1 inhibitors, we conducted an AlphaScreen assay based high-throughput screening (HTS) and identified a novel and effective 53BP1-TTD inhibitor DP308 which disrupts the binding between 53BP1 and H4K20me2 peptide with an IC value of 1.69 ± 0.73 μM. Both Microscale Themophoresis (MST) and Surface Plasmon Resonance (SPR) assays confirmed the direct binding between DP308 and 53BP1-TTD protein with binding affinity (K) of about 2.7 μM. Molecular docking studies further suggested that DP308 possibly occupies the H4K20me2 binding pocket of the 53BP1-TTD aromatic cage. These results demonstrated that DP308 is a promising small molecule inhibitor for further optimization towards a more potent chemical probe of 53BP1. Additionally, it could be a potential valuable tool for applying to gene editing therapy by increasing the efficiency of CRISPR/Cas9 genome editing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2021.116054DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 genome
12
genome editing
12
53bp1
9
high-throughput screening
8
discovery novel
4
novel 53bp1
4
inhibitor
4
53bp1 inhibitor
4
inhibitor alphascreen-based
4
alphascreen-based high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!