Behavioural flexibility is a cognition-related function that enables subjects to adapt to a changing environment. Orbitofrontal cortex (OFC) and hippocampus (HC) have been involved in cognitive flexibility, but the interaction between these structures might be of particular functional significance. We applied a disconnection model in C57BL/6JRj mice to investigate the importance of OFC and ventral HC (vHC) interaction. Spatial acquisition and reversal performance in the Morris water maze (MWM) was compared between animals with small contralateral excitotoxic lesions to OFC and vHC, ipsilateral lesions (i.e., OFC-vHC lesions in the same hemisphere), as well as small bilateral OFC or vHC lesions. Spatial learning and memory performance was mostly unimpaired or only slightly impaired in our brain-lesioned animals compared to sham-lesioned control mice. However, contralaterally lesioned mice were significantly impaired during the early phase of reversal learning, whereas the other lesion groups performed similar to controls. These mice might also have experienced some difficulties using cognitively advanced search strategies. Additional non-mnemonic tests indicated that none of the defects could be reduced to motor, motivational or anxiety-related changes. Our findings support the particular role of PFC-HC interaction in advanced cognitive processes and flexibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.135711DOI Listing

Publication Analysis

Top Keywords

orbitofrontal cortex
8
reversal learning
8
ofc vhc
8
effects orbitofrontal
4
cortex ventral
4
ventral hippocampus
4
hippocampus disconnection
4
disconnection spatial
4
spatial reversal
4
learning behavioural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!