Neogenin is highly expressed in diffuse intrinsic pontine glioma and influences tumor invasion.

Brain Res

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA. Electronic address:

Published: July 2021

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147348DOI Listing

Publication Analysis

Top Keywords

neogenin highly
4
highly expressed
4
expressed diffuse
4
diffuse intrinsic
4
intrinsic pontine
4
pontine glioma
4
glioma influences
4
influences tumor
4
tumor invasion
4
neogenin
1

Similar Publications

Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function.

View Article and Find Full Text PDF

Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity.

View Article and Find Full Text PDF

Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation.

Neural Regen Res

December 2023

Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal.

Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance.

View Article and Find Full Text PDF

Five decades ago, long-term potentiation (LTP) of synaptic transmission was discovered at entorhinal cortex→dentate gyrus (EC→DG) synapses, but the molecular determinants of EC→DG LTP remain largely unknown. Here, we show that the presynaptic neurexin–ligand cerebellin-4 (Cbln4) is highly expressed in the entorhinal cortex and essential for LTP at EC→DG synapses, but dispensable for basal synaptic transmission at these synapses. Cbln4, when bound to cell-surface neurexins, forms transcellular complexes by interacting with postsynaptic DCC (deleted in colorectal cancer) or neogenin-1.

View Article and Find Full Text PDF

Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain.

Front Neuroanat

November 2021

Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.

Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!