N-methyl-D-aspartaterecepro receptor (NMDARs) are a subclass of glutamate receptors, which play an essential role in excitatory neurotransmission, but their excessive overactivation by glutamate leads to excitotoxicity. NMDARs are hence a valid pharmacological target for the treatment of neurodegenerative disorders; however, novel drugs targeting NMDARs are often associated with specific psychotic side effects and abuse potential. Motivated by currently available treatment against neurodegenerative diseases involving the inhibitors of acetylcholinesterase (AChE) and NMDARs, administered also in combination, we developed a dually-acting compound 7-phenoxytacrine (7-PhO-THA) and evaluated its neuropsychopharmacological and drug-like properties for potential therapeutic use. Indeed, we have confirmed the dual potency of 7-PhO-THA, i.e. potent and balanced inhibition of both AChE and NMDARs. We discovered that it selectively inhibits the GluN1/GluN2B subtype of NMDARs via an ifenprodil-binding site, in addition to its voltage-dependent inhibitory effect at both GluN1/GluN2A and GluN1/GluN2B subtypes of NMDARs. Furthermore, whereas NMDA-induced lesion of the dorsal hippocampus confirmed potent anti-excitotoxic and neuroprotective efficacy, behavioral observations showed also a cholinergic component manifesting mainly in decreased hyperlocomotion. From the point of view of behavioral side effects, 7-PhO-THA managed to avoid these, notably those analogous to symptoms of schizophrenia. Thus, CNS availability and the overall behavioral profile are promising for subsequent investigation of therapeutic use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2021.114460DOI Listing

Publication Analysis

Top Keywords

neuroprotective efficacy
8
treatment neurodegenerative
8
side effects
8
ache nmdars
8
nmdars
7
7-phenoxytacrine dually
4
dually acting
4
acting drug
4
drug neuroprotective
4
efficacy vivo
4

Similar Publications

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Protective effects of wogonin in the treatment of central nervous system and degenerative diseases.

Brain Res Bull

January 2025

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:

Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.

View Article and Find Full Text PDF

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson's disease via anti-neuroinflammation.

Int J Biol Macromol

January 2025

Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China. Electronic address:

Currently, the clinical drugs for Parkinson's disease (PD) only focus on motor symptoms, while non-motor symptoms like depression are usually neglected. Even though, the efficacy of existing neurotherapeutic drugs is extremely poor which is due to the blood brain barrier (BBB). Therefore, a biomimetic polydopamine carbon dots (PDA C-dots) at 2-4 nm was synthesized, while exosomes from macrophages were applied to encapsulate PDA C-dots for improving their BBB-crossing ability and inflammation-targeting effect.

View Article and Find Full Text PDF

Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!