An innate immune response is essential to mobilize protective immunity upon the infection of respiratory epithelial cells with influenza A virus (IAV). The response is classified as early (nonspecific effectors), local systematic (effector cells recruitment) and late (antigen to lymphoid organ transport, naive B and T cells recognition, effector cells clonal expansion and differentiation). Virus particles are detected by the host cells as non-self by various sensors that are present on the cell surface, endosomes and cytosol. These sensors are collectively termed as pattern recognition receptors (PRRs). The PRRs distinguish unique molecular signatures known as pathogen-associated molecular pattern, which are present either on the cell surface or within intracellular compartments. PRRs have been classified into five major groups: C-Type Lectin Receptor (CLR), Toll-like receptor (TLR), Nod-like receptor (NLR), Retinoic acid-inducible gene-I-like receptor (RLR), which play a role in innate immunity to IAV infection, and the pyrin and hematopoietic interferon-inducible nuclear (PYHIN) domain protein. Here, we discuss the role of PRRs in cellular infectivity of IAV and highlight the recent progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3855/jidc.13258 | DOI Listing |
Hum Gene Ther
January 2025
Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany.
Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Respiratory Medicine, Children' s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China.
Background: The pathogenic distribution of co-infections and immunological status of patients infected with human adenovirus serotypes 3 or 7 (HAdV-3 or HAdV-7) were poorly understood.
Methods: This study involved a retrospective analysis of respiratory specimens collected from enrolled children with lower respiratory tract infections (LRTIs), positive for HAdV-3 or HAdV-7 from January 2017 to December 2019. Demographic data, clinical features, laboratory and radiographic findings were compared to delineate the impact of co-infections, and immune responses on clinical severity of HAdV-3 or HAdV-7 infections.
Front Immunol
January 2025
Immunology Research Center, National Health Research Institute, Zhunan, Taiwan.
CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.
View Article and Find Full Text PDFFront Immunol
January 2025
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!